Endocrinology of the Male Reproductive System and Spermatogenesis (2025)

  • de Kretser D, Temple-Smith P, Kerr J (1982) Anatomical and functional aspects of the male reproductive organs. Handbook of Urology, Vol XVI, Disturbances in Male Fertility. 16: 1-131

  • Jarow JP (1990) Intratesticular arterial anatomy. J Androl. 11(3): 255-9

  • Dahl EV, Herrick JF (1959) A vascular mechanism for maintaining testicular temperature by counter-current exchange. Surg Gynecol Obstet. 108(6): 697-705

  • Clermont Y, Huckins C (1961) Microscopic anatomy of the sex cords and seminiferous tubules in growing and adult male albino rats. Am J Anat 108: 79-97

  • de Kretser D, Kerr J (1994) The cytology of the testis, in The Physiology of Reproduction, Knobil, E. and Neill, J.D., Editors. Raven Press: New York. p. 1177-1290

  • Sharpe R (1994) Regulation of spermatogenesis, in The Physiology of Reproduction, Knobil, E. and Neill, J.D., Editors. Raven Press: New York. p. 1363-1434

  • Russell LD, Griswold MD (1993) The Sertoli Cell. Clearwater, Florida: Cache River Press

  • Dym M, Fawcett DW (1971) Further observations on the numbers of spermatogonia, spermatocytes, and spermatids connected by intercellular bridges in the mammalian testis. Biol Reprod. 4(2): 195-215

  • Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W, Hasenfuss G (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature. 440(7088): 1199-203

  • Conrad S, Renninger M, Hennenlotter J, et al. (2008) Generation of pluripotent stem cells from adult human testis. Nature. 456(7220): 344-9

  • Meistrich ML, van Beek M (1993) Spermatogonial stem cells. Cell and Molecular Biology of the Testis. 266-295

  • Clermont Y (1972) Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev. 52(1): 198-236

  • Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S, Shinohara T (2003) Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod. 69(2): 612-6

  • Nagano M, Avarbock MR, Brinster RL (1999) Pattern and kinetics of mouse donor spermatogonial stem cell colonization in recipient testes. Biol Reprod. 60(6): 1429-36

  • Ogawa T, Dobrinski I, Avarbock MR, Brinster RL (2000) Transplantation of male germ line stem cells restores fertility in infertile mice. Nat Med. 6(1): 29-34

  • Ogawa T, Dobrinski I, Brinster RL (1999) Recipient preparation is critical for spermatogonial transplantation in the rat. Tissue Cell. 31(5): 461-72

  • Chan F, Oatley MJ, Kaucher AV, Yang QE, Bieberich CJ, Shashikant CS, Oatley JM (2014) Functional and molecular features of the Id4+ germline stem cell population in mouse testes. Genes Dev. 28(12): 1351-62

  • Oatley MJ, Kaucher AV, Racicot KE, Oatley JM (2011) Inhibitor of DNA binding 4 is expressed selectively by single spermatogonia in the male germline and regulates the self-renewal of spermatogonial stem cells in mice. Biol Reprod. 85(2): 347-56

  • Nagano MC, Yeh JR (2013) The identity and fate decision control of spermatogonial stem cells: where is the point of no return? Curr Top Dev Biol. 102: 61-95

  • Hara K, Nakagawa T, Enomoto H, Suzuki M, Yamamoto M, Simons BD, Yoshida S (2014) Mouse spermatogenic stem cells continually interconvert between equipotent singly isolated and syncytial states. Cell Stem Cell. 14(5): 658-72

  • Nakagawa T, Sharma M, Nabeshima Y, Braun RE, Yoshida S (2010) Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science. 328(5974): 62-7

  • Clermont Y (1969) Two classes of spermatogonial stem cells in the monkey (Cercopithecus aethiops). Am J Anat. 126(1): 57-71

  • van Alphen MM, van de Kant HJ, de Rooij DG (1988) Depletion of the spermatogonia from the seminiferous epithelium of the rhesus monkey after X irradiation. Radiat Res. 113(3): 473-86

  • Schlatt S, Weinbauer GF (1994) Immunohistochemical localization of proliferating cell nuclear antigen as a tool to study cell proliferation in rodent and primate testes. Int J Androl. 17(4): 214-22

  • Schulze C (1979) Morphological characteristics of the spermatogonial stem cells in man. Cell Tissue Res. 198(2): 191-9

  • Plant TM (2010) Undifferentiated primate spermatogonia and their endocrine control. Trends Endocrinol Metab. 21(8): 488-95

  • Ramaswamy S, Razack BS, Roslund RM, Suzuki H, Marshall GR, Rajkovic A, Plant TM (2014) Spermatogonial SOHLH1 nucleocytoplasmic shuttling associates with initiation of spermatogenesis in the rhesus monkey (Macaca mulatta). Mol Hum Reprod. 20(4): 350-7

  • Gassei K, Ehmcke J, Dhir R, Schlatt S (2010) Magnetic activated cell sorting allows isolation of spermatogonia from adult primate testes and reveals distinct GFRa1-positive subpopulations in men. J Med Primatol. 39(2): 83-91

  • Shinohara T, Orwig KE, Avarbock MR, Brinster RL (2000) Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells. Proc Natl Acad Sci U S A. 97(15): 8346-51

  • Stubbs L, Stern H (1986) DNA synthesis at selective sites during pachytene in mouse spermatocytes. Chromosoma. 93(6): 529-36

  • Heller CH, Clermont Y (1964) Kinetics of the Germinal Epithelium in Man. Recent Prog Horm Res. 20: 545-75

  • Vrooman LA, Nagaoka SI, Hassold TJ, Hunt PA (2014) Evidence for paternal age-related alterations in meiotic chromosome dynamics in the mouse. Genetics. 196(2): 385-96

  • De Kretser DM (1969) Ultrastructural features of human spermiogenesis. Z Zellforsch Mikrosk Anat. 98(4): 477-505

  • Eddy EM (1999) Role of heat shock protein HSP70-2 in spermatogenesis. Rev Reprod. 4(1): 23-30

  • O'Donnell L, Nicholls PK, O'Bryan MK, McLachlan RI, Stanton PG (2011) Spermiation: The process of sperm release. Spermatogenesis. 1(1): 14-35

  • Hermo L, Pelletier RM, Cyr DG, Smith CE (2010) Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 2: changes in spermatid organelles associated with development of spermatozoa. Microsc Res Tech. 73(4): 279-319

  • Hermo L, Pelletier RM, Cyr DG, Smith CE (2010) Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 3: developmental changes in spermatid flagellum and cytoplasmic droplet and interaction of sperm with the zona pellucida and egg plasma membrane. Microsc Res Tech. 73(4): 320-63

  • Oko RJ, Jando V, Wagner CL, Kistler WS, Hermo LS (1996) Chromatin reorganization in rat spermatids during the disappearance of testis-specific histone, H1t, and the appearance of transition proteins TP1 and TP2. Biol Reprod. 54(5): 1141-57

  • Steger K, Klonisch T, Gavenis K, Drabent B, Doenecke D, Bergmann M (1998) Expression of mRNA and protein of nucleoproteins during human spermiogenesis. Mol Hum Reprod. 4(10): 939-45

  • Eddy EM (1998) Regulation of gene expression during spermatogenesis. Semin Cell Dev Biol. 9(4): 451-7

  • Russell LD, Russell JA, MacGregor GR, Meistrich ML (1991) Linkage of manchette microtubules to the nuclear envelope and observations of the role of the manchette in nuclear shaping during spermiogenesis in rodents. Am J Anat. 192(2): 97-120

  • Kierszenbaum AL, Tres LL (2004) The acrosome-acroplaxome-manchette complex and the shaping of the spermatid head. Arch Histol Cytol. 67(4): 271-84

  • O'Donnell L, O'Bryan MK (2014) Microtubules and spermatogenesis. Semin Cell Dev Biol. 30: 45-54

  • Fawcett DW (1975) The mammalian spermatozoon. Dev Biol. 44(2): 394-436

  • Kierszenbaum AL (2002) Intramanchette transport (IMT): managing the making of the spermatid head, centrosome, and tail. Mol Reprod Dev. 63(1): 1-4

  • Carrera A, Gerton GL, Moss SB (1994) The major fibrous sheath polypeptide of mouse sperm: structural and functional similarities to the A-kinase anchoring proteins. Dev Biol. 165(1): 272-84

  • Fulcher KD, Mori C, Welch JE, O'Brien DA, Klapper DG, Eddy EM (1995) Characterization of Fsc1 cDNA for a mouse sperm fibrous sheath component. Biol Reprod. 52(1): 41-9

  • Mandal A, Naaby-Hansen S, Wolkowicz MJ, et al. (1999) FSP95, a testis-specific 95-kilodalton fibrous sheath antigen that undergoes tyrosine phosphorylation in capacitated human spermatozoa. Biol Reprod. 61(5): 1184-97

  • Mei X, Singh IS, Erlichman J, Orr GA (1997) Cloning and characterization of a testis-specific, developmentally regulated A-kinase-anchoring protein (TAKAP-80) present on the fibrous sheath of rat sperm. Eur J Biochem. 246(2): 425-32

  • Miki K, Eddy EM (1998) Identification of tethering domains for protein kinase A type Ialpha regulatory subunits on sperm fibrous sheath protein FSC1. J Biol Chem. 273(51): 34384-90

  • Vijayaraghavan S, Liberty GA, Mohan J, Winfrey VP, Olson GE, Carr DW (1999) Isolation and molecular characterization of AKAP110, a novel, sperm-specific protein kinase A-anchoring protein. Mol Endocrinol. 13(5): 705-17

  • Kirichok Y, Navarro B, Clapham DE (2006) Whole-cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel. Nature. 439(7077): 737-40

  • Strunker T, Goodwin N, Brenker C, Kashikar ND, Weyand I, Seifert R, Kaupp UB (2011) The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature. 471(7338): 382-6

  • Lishko PV, Botchkina IL, Kirichok Y (2011) Progesterone activates the principal Ca2+ channel of human sperm. Nature. 471(7338): 387-91

  • Okunade GW, Miller ML, Pyne GJ, et al. (2004) Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J Biol Chem. 279(32): 33742-50

  • O'Bryan MK, Sebire K, Meinhardt A, Edgar K, Keah HH, Hearn MT, De Kretser DM (2001) Tpx-1 is a component of the outer dense fibers and acrosome of rat spermatozoa. Mol Reprod Dev. 58(1): 116-25

  • Gibbs GM, Scanlon MJ, Swarbrick J, Curtis S, Gallant E, Dulhunty AF, O'Bryan MK (2006) The cysteine-rich secretory protein domain of Tpx-1 is related to ion channel toxins and regulates ryanodine receptor Ca2+ signaling. J Biol Chem. 281(7): 4156-63

  • Holstein AF (1976) Ultrastructural observations on the differentiation of spermatids in man. Andrologia. 8(2): 157-65

  • Russell LD (1991) The perils of sperm release-- 'let my children go'. Int J Androl. 14(5): 307-11

  • Russell L (1993) Role in spermiation, in The Sertoli cell, Russell, L.D. and Griswold, M.D., Editors. Cache River Press: Clearwater, FL. p. 269-302

  • O'Donnell L (2014) Mechanisms of spermiogenesis and spermiation and how they are disturbed. Spermatogenesis. 4(2): e979623

  • Leblond CP, Clermont Y (1952) Definition of the stages of the cycle of the seminiferous epithelium in the rat. Ann N Y Acad Sci. 55(4): 548-73

  • Parvinen M (1982) Regulation of the seminiferous epithelium. Endocr Rev. 3(4): 404-17

  • Perey B, Clermont Y, LeBlond CP (1961) The wave of the seminiferous epithelium in the rat. . Am J Anat 108: 47-77

  • Regaud C (1901) Études sur la structure des tubes seminiferes et sur la spermatogenese chez les mammiferes. . Arch Anat Microsc 4: 101-156

  • Clermont Y (1963) The cycle of the seminiferous epithelium in man. Am J Anat. 112: 35-51

  • Johnston DS, Wright WW, Dicandeloro P, Wilson E, Kopf GS, Jelinsky SA (2008) Stage-specific gene expression is a fundamental characteristic of rat spermatogenic cells and Sertoli cells. Proc Natl Acad Sci U S A. 105(24): 8315-20

  • Clouthier DE, Avarbock MR, Maika SD, Hammer RE, Brinster RL (1996) Rat spermatogenesis in mouse testis. Nature. 381(6581): 418-21

  • Timmons PM, Rigby PW, Poirier F (2002) The murine seminiferous epithelial cycle is pre-figured in the Sertoli cells of the embryonic testis. Development. 129(3): 635-47

  • Sugimoto R, Nabeshima Y, Yoshida S (2012) Retinoic acid metabolism links the periodical differentiation of germ cells with the cycle of Sertoli cells in mouse seminiferous epithelium. Mech Dev. 128(11-12): 610-24

  • Fawcett D (1975) Ultrastructure and function of the Sertoli cell. Handbook of Physiology, Section 7, Endocrinology. Vol 5, Male Reproductive System: 21-55

  • Vogl AW (1988) Changes in the distribution of microtubules in rat Sertoli cells during spermatogenesis. Anat Rec. 222(1): 34-41

  • Dym M, Fawcett DW (1970) The blood-testis barrier in the rat and the physiological compartmentation of the seminiferous epithelium. Biol Reprod. 3(3): 308-26

  • Setchell BP, Waites GM (1970) Changes in the permeability of the testicular capillaries and of the 'blood-testis barrier' after injection of cadmium chloride in the rat. J Endocrinol. 47(1): 81-6

  • Meng J, Greenlee AR, Taub CJ, Braun RE (2011) Sertoli cell-specific deletion of the androgen receptor compromises testicular immune privilege in mice. Biol Reprod. 85(2): 254-60

  • McCabe MJ, Allan CM, Foo CF, Nicholls PK, McTavish KJ, Stanton PG (2012) Androgen Initiates Sertoli Cell Tight Junction Formation in the Hypogonadal (hpg) Mouse. Biol Reprod.

  • Yan HH, Mruk DD, Cheng CY (2008) Junction restructuring and spermatogenesis: the biology, regulation, and implication in male contraceptive development. Curr Top Dev Biol. 80: 57-92

  • Mruk DD, Cheng CY (2015) The Mammalian Blood-Testis Barrier: Its Biology and Regulation. Endocr Rev. 36(5): 564-91

  • Gow A, Southwood CM, Li JS, Pariali M, Riordan GP, Brodie SE, Danias J, Bronstein JM, Kachar B, Lazzarini RA (1999) CNS myelin and sertoli cell tight junction strands are absent in Osp/claudin-11 null mice. Cell. 99(6): 649-59

  • Hall PF, Mita M (1984) Influence of follicle-stimulating hormone on glucose transport by cultured Sertoli cells. Biol Reprod. 31(5): 863-9

  • Jutte NH, Jansen R, Grootegoed JA, Rommerts FF, van der Molen HJ (1983) FSH stimulation of the production of pyruvate and lactate by rat Sertoli cells may be involved in hormonal regulation of spermatogenesis. J Reprod Fertil. 68(1): 219-26

  • Robinson R, Fritz IB (1979) Myoinositol biosynthesis by Sertoli cells, and levels of myoinositol biosynthetic enzymes in testis and epididymis. Can J Biochem. 57(6): 962-7

  • Kaur G, Thompson LA, Dufour JM (2014) Sertoli cells--immunological sentinels of spermatogenesis. Semin Cell Dev Biol. 30: 36-44

  • Rebourcet D, O'Shaughnessy PJ, Monteiro A, Milne L, Cruickshanks L, Jeffrey N, Guillou F, Freeman TC, Mitchell RT, Smith LB (2014) Sertoli cells maintain Leydig cell number and peritubular myoid cell activity in the adult mouse testis. PLoS One. 9(8): e105687

  • Hedger MP, Winnall WR (2012) Regulation of activin and inhibin in the adult testis and the evidence for functional roles in spermatogenesis and immunoregulation. Mol Cell Endocrinol. 359(1-2): 30-42

  • Nicholls PK, Stanton PG, Chen JL, Olcorn JS, Haverfield JT, Qian H, Walton KL, Gregorevic P, Harrison CA (2012) Activin signaling regulates Sertoli cell differentiation and function. Endocrinology. 153(12): 6065-77

  • Haverfield JT, Meachem SJ, Nicholls PK, Rainczuk KE, Simpson ER, Stanton PG (2014) Differential permeability of the blood-testis barrier during reinitiation of spermatogenesis in adult male rats. Endocrinology. 155(3): 1131-44

  • Yan W (2015) Gene knockouts that affect Sertoli cell function, in Sertoli cell biology, Griswold, M.D., Editor Elsevier: Waltham, MA. p. 437-469

  • Chen C, Ouyang W, Grigura V, et al. (2005) ERM is required for transcriptional control of the spermatogonial stem cell niche. Nature. 436(7053): 1030-4

  • Phillips BT, Gassei K, Orwig KE (2010) Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc Lond B Biol Sci. 365(1546): 1663-78

  • Simorangkir DR, de Kretser DM, Wreford NG (1995) Increased numbers of Sertoli and germ cells in adult rat testes induced by synergistic action of transient neonatal hypothyroidism and neonatal hemicastration. J Reprod Fertil. 104(2): 207-13

  • Simorangkir DR, Wreford NG, De Kretser DM (1997) Impaired germ cell development in the testes of immature rats with neonatal hypothyroidism. J Androl. 18(2): 186-93

  • Haverfield JT, Stanton PG, Meachem SJ (2015) Adult Sertoli cell differentiation status in humans., in Sertoli cell biology, Griswold, M.D., Editor Elsevier: Waltham, MA. p. 81-98

  • Mazaud-Guittot S, Meugnier E, Pesenti S, Wu X, Vidal H, Gow A, Le Magueresse-Battistoni B (2010) Claudin 11 deficiency in mice results in loss of the Sertoli cell epithelial phenotype in the testis. Biol Reprod. 82(1): 202-13

  • Tarulli GA, Stanton PG, Loveland KL, Meyts ER, McLachlan RI, Meachem SJ (2013) A survey of Sertoli cell differentiation in men after gonadotropin suppression and in testicular cancer. Spermatogenesis. 3(1): e24014

  • Matson CK, Murphy MW, Sarver AL, Griswold MD, Bardwell VJ, Zarkower D (2011) DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature. 476(7358): 101-4

  • Rebourcet D, O'Shaughnessy PJ, Pitetti JL, et al. (2014) Sertoli cells control peritubular myoid cell fate and support adult Leydig cell development in the prepubertal testis. Development. 141(10): 2139-49

  • Cortes D, Muller J, Skakkebaek NE (1987) Proliferation of Sertoli cells during development of the human testis assessed by stereological methods. Int J Androl. 10(4): 589-96

  • Yang Q-E, Oatley JM (2015) Early postnatal interactions between Sertoli and germ cells, in Sertoli cell biology, Griswold, M.D., Editor Elsevier: Waltham, MA. p. 81-98

  • Bagheri-Fam S, Argentaro A, Svingen T, Combes AN, Sinclair AH, Koopman P, Harley VR (2011) Defective survival of proliferating Sertoli cells and androgen receptor function in a mouse model of the ATR-X syndrome. Hum Mol Genet. 20(11): 2213-24

  • Petersen C, Soder O (2006) The Sertoli cell--a hormonal target and 'super' nurse for germ cells that determines testicular size. Horm Res. 66(4): 153-61

  • Cooke PS, Hess RA, Porcelli J, Meisami E (1991) Increased sperm production in adult rats after transient neonatal hypothyroidism. Endocrinology. 129(1): 244-8

  • Boitani C, Stefanini M, Fragale A, Morena AR (1995) Activin stimulates Sertoli cell proliferation in a defined period of rat testis development. Endocrinology. 136(12): 5438-44

  • Meehan T, Schlatt S, O'Bryan MK, de Kretser DM, Loveland KL (2000) Regulation of germ cell and Sertoli cell development by activin, follistatin, and FSH. Dev Biol. 220(2): 225-37

  • Sheckter CB, McLachlan RI, Tenover JS, Matsumoto AM, Burger HG, de Kretser DM, Bremner WJ (1988) Stimulation of serum inhibin concentrations by gonadotropin-releasing hormone in men with idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab. 67(6): 1221-4

  • Christensen A (1975) Leydig cells, in Handbook of Physiology, Section 7, Endocrinology. p. 57-94

  • Fawcett DW, Leak LV, Heidger PM, Jr. (1970) Electron microscopic observations on the structural components of the blood-testis barrier. J Reprod Fertil Suppl. 10: 105-22

  • Miller SC (1982) Localization of plutonium-241 in the testis. An interspecies comparison using light and electron microscope autoradiography. Int J Radiat Biol Relat Stud Phys Chem Med. 41(6): 633-43

  • Miller SC, Bowman BM, Rowland HG (1983) Structure, cytochemistry, endocytic activity, and immunoglobulin (Fc) receptors of rat testicular interstitial-tissue macrophages. Am J Anat. 168(1): 1-13

  • Martin LJ (2016) Cell interactions and genetic regulation that contribute to testicular Leydig cell development and differentiation. Mol Reprod Dev. 83(6): 470-87

  • Teerds KJ, Huhtaniemi IT (2015) Morphological and functional maturation of Leydig cells: from rodent models to primates. Hum Reprod Update. 21(3): 310-28

  • Lording DW, De Kretser DM (1972) Comparative ultrastructural and histochemical studies of the interstitial cells of the rat testis during fetal and postnatal development. J Reprod Fertil. 29(2): 261-9

  • Pelliniemi LJ, Niemi M (1969) Fine structure of the human foetal testis. I. The interstitial tissue. Z Zellforsch Mikrosk Anat. 99(4): 507-22

  • Haider SG (2004) Cell biology of Leydig cells in the testis. Int Rev Cytol. 233: 181-241

  • Wen Q, Cheng CY, Liu YX (2016) Development, function and fate of fetal Leydig cells. Semin Cell Dev Biol. 59: 89-98

  • Huhtaniemi I (1977) Studies on steroidogenesis and its regulation in human fetal adrenal and testis. J Steroid Biochem. 8(5): 491-7

  • Prince FP (1990) Ultrastructural evidence of mature Leydig cells and Leydig cell regression in the neonatal human testis. Anat Rec. 228(4): 405-17

  • Shima Y, Matsuzaki S, Miyabayashi K, Otake H, Baba T, Kato S, Huhtaniemi I, Morohashi K (2015) Fetal Leydig Cells Persist as an Androgen-Independent Subpopulation in the Postnatal Testis. Mol Endocrinol. 29(11): 1581-93

  • Christensen AK, Peacock KC (1980) Increase in Leydig cell number in testes of adult rats treated chronically with an excess of human chorionic gonadotropin. Biol Reprod. 22(2): 383-91

  • Prince FP (2001) The triphasic nature of Leydig cell development in humans, and comments on nomenclature. J Endocrinol. 168(2): 213-6

  • O'Shaughnessy PJ, Baker PJ, Johnston H (2006) The foetal Leydig cell-- differentiation, function and regulation. Int J Androl. 29(1): 90-5; discussion 105-8

  • Bitgood MJ, Shen L, McMahon AP (1996) Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr Biol. 6(3): 298-304

  • Brokken LJ, Adamsson A, Paranko J, Toppari J (2009) Antiandrogen exposure in utero disrupts expression of desert hedgehog and insulin-like factor 3 in the developing fetal rat testis. Endocrinology. 150(1): 445-51

  • Clark AM, Garland KK, Russell LD (2000) Desert hedgehog (Dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and normal development of peritubular cells and seminiferous tubules. Biol Reprod. 63(6): 1825-38

  • Li L, Wang Y, Li X, Liu S, Wang G, Lin H, Zhu Q, Guo J, Chen H, Ge HS, Ge RS (2016) Regulation of development of rat stem and progenitor Leydig cells by activin. Andrology.

  • Odeh HM, Kleinguetl C, Ge R, Zirkin BR, Chen H (2014) Regulation of the proliferation and differentiation of Leydig stem cells in the adult testis. Biol Reprod. 90(6): 123

  • Pierucci-Alves F, Clark AM, Russell LD (2001) A developmental study of the Desert hedgehog-null mouse testis. Biol Reprod. 65(5): 1392-402

  • Canto P, Soderlund D, Reyes E, Mendez JP (2004) Mutations in the desert hedgehog (DHH) gene in patients with 46,XY complete pure gonadal dysgenesis. J Clin Endocrinol Metab. 89(9): 4480-3

  • Wen Q, Zheng QS, Li XX, Hu ZY, Gao F, Cheng CY, Liu YX (2014) Wt1 dictates the fate of fetal and adult Leydig cells during development in the mouse testis. Am J Physiol Endocrinol Metab. 307(12): E1131-43

  • Umehara T, Kawashima I, Kawai T, Hoshino Y, Morohashi KI, Shima Y, Zeng W, Richards JS, Shimada M (2016) Neuregulin 1 Regulates Proliferation of Leydig Cells to Support Spermatogenesis and Sexual Behavior in Adult Mice. Endocrinology. 157(12): 4899-4913

  • Payne AH, Hardy MP, Russell LD (1996) The Leydig Cell Illinois: Cache River Press. 1-802

  • Foresta C, Bettella A, Vinanzi C, Dabrilli P, Meriggiola MC, Garolla A, Ferlin A (2004) A novel circulating hormone of testis origin in humans. J Clin Endocrinol Metab. 89(12): 5952-8

  • Zimmermann S, Steding G, Emmen JM, Brinkmann AO, Nayernia K, Holstein AF, Engel W, Adham IM (1999) Targeted disruption of the Insl3 gene causes bilateral cryptorchidism. Mol Endocrinol. 13(5): 681-91

  • Ivell R, Wade JD, Anand-Ivell R (2013) INSL3 as a biomarker of Leydig cell functionality. Biol Reprod. 88(6): 147

  • Anand-Ivell RJ, Relan V, Balvers M, Coiffec-Dorval I, Fritsch M, Bathgate RA, Ivell R (2006) Expression of the insulin-like peptide 3 (INSL3) hormone-receptor (LGR8) system in the testis. Biol Reprod. 74(5): 945-53

  • Kawamura K, Kumagai J, Sudo S, Chun SY, Pisarska M, Morita H, Toppari J, Fu P, Wade JD, Bathgate RA, Hsueh AJ (2004) Paracrine regulation of mammalian oocyte maturation and male germ cell survival. Proc Natl Acad Sci U S A. 101(19): 7323-8

  • Yuan FP, Li X, Lin J, Schwabe C, Bullesbach EE, Rao CV, Lei ZM (2010) The role of RXFP2 in mediating androgen-induced inguinoscrotal testis descent in LH receptor knockout mice. Reproduction. 139(4): 759-69

  • Pathirana IN, Kawate N, Bullesbach EE, Takahashi M, Hatoya S, Inaba T, Tamada H (2012) Insulin-like peptide 3 stimulates testosterone secretion in mouse Leydig cells via cAMP pathway. Regul Pept. 178(1-3): 102-6

  • Johansen ML, Anand-Ivell R, Mouritsen A, Hagen CP, Mieritz MG, Soeborg T, Johannsen TH, Main KM, Andersson AM, Ivell R, Juul A (2014) Serum levels of insulin-like factor 3, anti-Mullerian hormone, inhibin B, and testosterone during pubertal transition in healthy boys: a longitudinal pilot study. Reproduction. 147(4): 529-35

  • Trabado S, Maione L, Bry-Gauillard H, et al. (2014) Insulin-like peptide 3 (INSL3) in men with congenital hypogonadotropic hypogonadism/Kallmann syndrome and effects of different modalities of hormonal treatment: a single-center study of 281 patients. J Clin Endocrinol Metab. 99(2): E268-75

  • Rohayem J, Fricke R, Czeloth K, Mallidis C, Wistuba J, Krallmann C, Zitzmann M, Kliesch S (2015) Age and markers of Leydig cell function, but not of Sertoli cell function predict the success of sperm retrieval in adolescents and adults with Klinefelter's syndrome. Andrology. 3(5): 868-75

  • Stanley E, Lin CY, Jin S, Liu J, Sottas CM, Ge R, Zirkin BR, Chen H (2012) Identification, Proliferation, and Differentiation of Adult Leydig Stem Cells. Endocrinology. DOI 10.1210/en.2012-1417

  • Baird DT, Galbraith A, Fraser IS, Newsam JE (1973) The concentration of oestrone and oestradiol-17 in spermatic venous blood in man. J Endocrinol. 57(2): 285-8

  • Rochira V, Madeo B, Diazzi C, Zirilli L, Santi D, Carani C. (2016) Estrogens and Male Reproduction, in www.ENDOTEXT.org, Endocrinology of Male Reproduction, Section Editor McLachlan R.I. MDTEXT.COM,INC, : South Dartmouth,MA 02748.

  • Handelsman DJ. (2016) Androgen Physiology, Pharmacology and Abuse in www.ENDOTEXT.org, Endocrinology of Male Reproduction, Section Editor McLachlan R.I. MDTEXT.COM,INC, : South Dartmouth,MA 02748.

  • Hodgson YM, de Kretser DM (1984) Acute responses of Leydig cells to hCG: evidence for early hypertrophy of Leydig cells. Mol Cell Endocrinol. 35(2-3): 75-82

  • Waterman MR, Simpson ER (1989) Regulation of steroid hydroxylase gene expression is multifactorial in nature. Recent Prog Horm Res. 45: 533-63; discussion 563-6

  • Wu FC, Irby DC, Clarke IJ, Cummins JT, de Kretser DM (1987) Effects of gonadotropin-releasing hormone pulse-frequency modulation on luteinizing hormone, follicle-stimulating hormone and testosterone secretion in hypothalamo/pituitary-disconnected rams. Biol Reprod. 37(3): 501-10

  • Beattie MC, Adekola L, Papadopoulos V, Chen H, Zirkin BR (2015) Leydig cell aging and hypogonadism. Exp Gerontol. 68: 87-91

  • Veldhuis JD, Liu PY, Keenan DM, Takahashi PY (2012) Older men exhibit reduced efficacy of and heightened potency downregulation by intravenous pulses of recombinant human LH: a study in 92 healthy men. Am J Physiol Endocrinol Metab. 302(1): E117-22

  • Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith CE, Hermo L, Suarez S, Roth BL, Ducy P, Karsenty G (2011) Endocrine regulation of male fertility by the skeleton. Cell. 144(5): 796-809

  • Karsenty G (2012) The mutual dependence between bone and gonads. J Endocrinol. 213(2): 107-14

  • Karsenty G, Oury F (2012) Biology without walls: the novel endocrinology of bone. Annu Rev Physiol. 74: 87-105

  • Aoki A, Fawcett DW (1978) Is there a local feedback from the seminiferous tubules affecting activity of the Leydig cells? Biol Reprod. 19(1): 144-58

  • de Kretser DM (1987) Local regulation of testicular function. Int Rev Cytol. 109: 89-112

  • O'Shaughnessy PJ, Morris ID, Huhtaniemi I, Baker PJ, Abel MH (2009) Role of androgen and gonadotrophins in the development and function of the Sertoli cells and Leydig cells: data from mutant and genetically modified mice. Mol Cell Endocrinol. 306(1-2): 2-8

  • De Gendt K, Atanassova N, Tan KA, et al. (2005) Development and function of the adult generation of Leydig cells in mice with Sertoli cell-selective or total ablation of the androgen receptor. Endocrinology. 146(9): 4117-26

  • Hazra R, Jimenez M, Desai R, Handelsman DJ, Allan CM (2013) Sertoli cell androgen receptor expression regulates temporal fetal and adult Leydig cell differentiation, function, and population size. Endocrinology. 154(9): 3410-22

  • O'Shaughnessy PJ, Hu L, Baker PJ (2008) Effect of germ cell depletion on levels of specific mRNA transcripts in mouse Sertoli cells and Leydig cells. Reproduction. 135(6): 839-50

  • Jegou B, Laws AO, de Kretser DM (1984) Changes in testicular function induced by short-term exposure of the rat testis to heat: further evidence for interaction of germ cells, Sertoli cells and Leydig cells. Int J Androl. 7(3): 244-57

  • Lue Y, Hikim AP, Wang C, Im M, Leung A, Swerdloff RS (2000) Testicular heat exposure enhances the suppression of spermatogenesis by testosterone in rats: the "two-hit" approach to male contraceptive development. Endocrinology. 141(4): 1414-24

  • Smith LB, O'Shaughnessy PJ, Rebourcet D (2015) Cell-specific ablation in the testis: what have we learned? Andrology. 3(6): 1035-49

  • Risbridger GP, Kerr JB, de Kretser DM (1981) Evaluation of Leydig cell function and gonadotropin binding in unilateral and bilateral cryptorchidism; evidence for local control of Leydig cell function by the seminiferous tubule. Biol Reprod. 24(3): 534-40

  • Risbridger GP, Kerr JB, Peake RA, de Kretser DM (1981) An assessment of Leydig cell function after bilateral or unilateral efferent duct ligation: further evidence for local control of Leydig cell function. Endocrinology. 109(4): 1234-41

  • Andersson AM, Jorgensen N, Frydelund-Larsen L, Rajpert-De Meyts E, Skakkebaek NE (2004) Impaired Leydig cell function in infertile men: a study of 357 idiopathic infertile men and 318 proven fertile controls. J Clin Endocrinol Metab. 89(7): 3161-7

  • van den Driesche S, Kolovos P, Platts S, Drake AJ, Sharpe RM (2012) Inter-relationship between testicular dysgenesis and Leydig cell function in the masculinization programming window in the rat. PLoS One. 7(1): e30111

  • Hales DB (2002) Testicular macrophage modulation of Leydig cell steroidogenesis. J Reprod Immunol. 57(1-2): 3-18

  • Welsh M, Moffat L, Belling K, de Franca LR, Segatelli TM, Saunders PT, Sharpe RM, Smith LB (2012) Androgen receptor signalling in peritubular myoid cells is essential for normal differentiation and function of adult Leydig cells. Int J Androl. 35(1): 25-40

  • Clermont Y (1958) Contractile elements in the limiting membrane of the seminiferous tubules of the rat. Exp Cell Res. 15(2): 438-40

  • Ross MH, Long IR (1966) Contractile cells in human seminiferous tubules. Science. 153(3741): 1271-3

  • Maekawa M, Kamimura K, Nagano T (1996) Peritubular myoid cells in the testis: their structure and function. Arch Histol Cytol. 59(1): 1-13

  • Rossi F, Ferraresi A, Romagni P, Silvestroni L, Santiemma V (2002) Angiotensin II stimulates contraction and growth of testicular peritubular myoid cells in vitro. Endocrinology. 143(8): 3096-104

  • Tripiciano A, Filippini A, Ballarini F, Palombi F (1998) Contractile response of peritubular myoid cells to prostaglandin F2alpha. Mol Cell Endocrinol. 138(1-2): 143-50

  • Tripiciano A, Filippini A, Giustiniani Q, Palombi F (1996) Direct visualization of rat peritubular myoid cell contraction in response to endothelin. Biol Reprod. 55(1): 25-31

  • Losinno AD, Sorrivas V, Ezquer M, Ezquer F, Lopez LA, Morales A (2016) Changes of myoid and endothelial cells in the peritubular wall during contraction of the seminiferous tubule. Cell Tissue Res. 365(2): 425-35

  • de Winter JP, Vanderstichele HM, Verhoeven G, Timmerman MA, Wesseling JG, de Jong FH (1994) Peritubular myoid cells from immature rat testes secrete activin-A and express activin receptor type II in vitro. Endocrinology. 135(2): 759-67

  • Gnessi L, Emidi A, Jannini EA, Carosa E, Maroder M, Arizzi M, Ulisse S, Spera G (1995) Testicular development involves the spatiotemporal control of PDGFs and PDGF receptors gene expression and action. J Cell Biol. 131(4): 1105-21

  • Verhoeven G, Hoeben E, De Gendt K (2000) Peritubular cell-Sertoli cell interactions: factors involved in PmodS activity. Andrologia. 32(1): 42-5

  • Welsh M, Saunders PT, Atanassova N, Sharpe RM, Smith LB (2009) Androgen action via testicular peritubular myoid cells is essential for male fertility. FASEB J. 23(12): 4218-30

  • Qian Y, Liu S, Guan Y, et al. (2013) Lgr4-mediated Wnt/beta-catenin signaling in peritubular myoid cells is essential for spermatogenesis. Development. 140(8): 1751-61

  • Chen LY, Brown PR, Willis WB, Eddy EM (2014) Peritubular myoid cells participate in male mouse spermatogonial stem cell maintenance. Endocrinology. 155(12): 4964-74

  • Chen LY, Willis WD, Eddy EM (2016) Targeting the Gdnf Gene in peritubular myoid cells disrupts undifferentiated spermatogonial cell development. Proc Natl Acad Sci U S A. 113(7): 1829-34

  • Griswold MD (2015) ed.^eds. Sertoli cell biology. 2nd ed. Elsevier: Waltham, MA

  • Lin YT, Capel B (2015) Cell fate commitment during mammalian sex determination. Curr Opin Genet Dev. 32: 144-52

  • Yao HH, Ungewitter E, Franco H, Capel B (2015) Establishment of fetal Sertoli cells and their role in testis morphogenesis, in Sertoli cell biology, Griswold, M.D., Editor Elsevier: Waltham, MA. p. 57-80

  • Ohta K, Yamamoto M, Lin Y, Hogg N, Akiyama H, Behringer RR, Yamazaki Y (2012) Male differentiation of germ cells induced by embryonic age-specific Sertoli cells in mice. Biol Reprod. 86(4): 112

  • Van Haaster LH, De Jong FH, Docter R, De Rooij DG (1992) The effect of hypothyroidism on Sertoli cell proliferation and differentiation and hormone levels during testicular development in the rat. Endocrinology. 131(3): 1574-6

  • Hazra R, Corcoran L, Robson M, McTavish KJ, Upton D, Handelsman DJ, Allan CM (2013) Temporal role of Sertoli cell androgen receptor expression in spermatogenic development. Mol Endocrinol. 27(1): 12-24

  • Meachem SJ, McLachlan RI, de Kretser DM, Robertson DM, Wreford NG (1996) Neonatal exposure of rats to recombinant follicle stimulating hormone increases adult Sertoli and spermatogenic cell numbers. Biol Reprod. 54(1): 36-44

  • Fahrioglu U, Murphy MW, Zarkower D, Bardwell VJ (2007) mRNA expression analysis and the molecular basis of neonatal testis defects in Dmrt1 mutant mice. Sex Dev. 1(1): 42-58

  • Welborn JP, Davis MG, Ebers SD, Stodden GR, Hayashi K, Cheatwood JL, Rao MK, MacLean JA, 2nd (2015) Rhox8 Ablation in the Sertoli Cells Using a Tissue-Specific RNAi Approach Results in Impaired Male Fertility in Mice. Biol Reprod. 93(1): 8

  • Hess RA, Vogl AW (2015) Sertoli cell anatomy and cytoskeleton, in Sertoli cell biology, Griswold, M.D., Editor Elsevier: Waltham, MA. p. 1-56

  • Zimmermann C, Stevant I, Borel C, Conne B, Pitetti JL, Calvel P, Kaessmann H, Jegou B, Chalmel F, Nef S (2015) Research resource: the dynamic transcriptional profile of sertoli cells during the progression of spermatogenesis. Mol Endocrinol. 29(4): 627-42

  • Hogarth CA (2015) Retinoic acid metabolism, signalling and function in the adult testis, in Sertoli cell biology, Griswold, M.D., Editor Elsevier: Waltham, MA. p. 247-272

  • Vernet N, Dennefeld C, Rochette-Egly C, Oulad-Abdelghani M, Chambon P, Ghyselinck NB, Mark M (2006) Retinoic acid metabolism and signaling pathways in the adult and developing mouse testis. Endocrinology. 147(1): 96-110

  • Hogarth CA, Arnold S, Kent T, Mitchell D, Isoherranen N, Griswold MD (2015) Processive pulses of retinoic acid propel asynchronous and continuous murine sperm production. Biol Reprod. 92(2): 37

  • Kent T, Arnold SL, Fasnacht R, Rowsey R, Mitchell D, Hogarth CA, Isoherranen N, Griswold MD (2016) ALDH Enzyme Expression Is Independent of the Spermatogenic Cycle, and Their Inhibition Causes Misregulation of Murine Spermatogenic Processes. Biol Reprod. 94(1): 12

  • Vernet N, Dennefeld C, Klopfenstein M, Ruiz A, Bok D, Ghyselinck NB, Mark M (2008) Retinoid X receptor beta (RXRB) expression in Sertoli cells controls cholesterol homeostasis and spermiation. Reproduction. 136(5): 619-26

  • Hasegawa K, Saga Y (2012) Retinoic acid signaling in Sertoli cells regulates organization of the blood-testis barrier through cyclical changes in gene expression. Development. 139(23): 4347-55

  • Nicholls PK, Harrison CA, Rainczuk KE, Wayne Vogl A, Stanton PG (2013) Retinoic acid promotes Sertoli cell differentiation and antagonises activin-induced proliferation. Mol Cell Endocrinol. 377(1-2): 33-43

  • O'Shaughnessy PJ (2014) Hormonal control of germ cell development and spermatogenesis. Semin Cell Dev Biol. 29: 55-65

  • Smith LB, Walker WH, O'Donnell L (2015) Hormonal regulation of spermatogenesis through Sertoli cells by androgens and estrogens, in Sertoli cell biology, Griswold, M.D., Editor Elsevier: Waltham, MA. p. 175-200

  • O'Donnell L, Meachem SJ, Stanton PG, McLachlan RI (2006) Endocrine regulation of spermatogenesis, in Knobil and Neill's Physiology of Reproduction, Neill, J.D., Editor Elsevier: San Diego, CA. p. 1017-1069

  • Ruwanpura SM, McLachlan RI, Meachem SJ (2010) Hormonal regulation of male germ cell development. J Endocrinol. 205(2): 117-31

  • Pitetti JL, Calvel P, Romero Y, Conne B, Truong V, Papaioannou MD, Schaad O, Docquier M, Herrera PL, Wilhelm D, Nef S (2013) Insulin and IGF1 receptors are essential for XX and XY gonadal differentiation and adrenal development in mice. PLoS Genet. 9(1): e1003160

  • Rodriguez I, Ody C, Araki K, Garcia I, Vassalli P (1997) An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO J. 16(9): 2262-70

  • Wreford NG, Rajendra Kumar T, Matzuk MM, de Kretser DM (2001) Analysis of the testicular phenotype of the follicle-stimulating hormone beta-subunit knockout and the activin type II receptor knockout mice by stereological analysis. Endocrinology. 142(7): 2916-20

  • Grover A, Sairam MR, Smith CE, Hermo L (2004) Structural and functional modifications of Sertoli cells in the testis of adult follicle-stimulating hormone receptor knockout mice. Biol Reprod. 71(1): 117-29

  • Matthiesson KL, McLachlan RI, O'Donnell L, Frydenberg M, Robertson DM, Stanton PG, Meachem SJ (2006) The relative roles of follicle-stimulating hormone and luteinizing hormone in maintaining spermatogonial maturation and spermiation in normal men. J Clin Endocrinol Metab. 91(10): 3962-9

  • Nieschlag E, Simoni M, Gromoll J, Weinbauer GF (1999) Role of FSH in the regulation of spermatogenesis: clinical aspects. Clin Endocrinol (Oxf). 51(2): 139-46

  • Simoni M, Weinbauer GF, Gromoll J, Nieschlag E (1999) Role of FSH in male gonadal function. Ann Endocrinol (Paris). 60(2): 102-6

  • Walker WH (2010) Non-classical actions of testosterone and spermatogenesis. Philos Trans R Soc Lond B Biol Sci. 365(1546): 1557-69

  • Toocheck C, Clister T, Shupe J, Crum C, Ravindranathan P, Lee TK, Ahn JM, Raj GV, Sukhwani M, Orwig KE, Walker WH (2016) Mouse Spermatogenesis Requires Classical and Nonclassical Testosterone Signaling. Biol Reprod. 94(1): 11

  • Chang C, Chen YT, Yeh SD, Xu Q, Wang RS, Guillou F, Lardy H, Yeh S (2004) Infertility with defective spermatogenesis and hypotestosteronemia in male mice lacking the androgen receptor in Sertoli cells. Proc Natl Acad Sci U S A. 101(18): 6876-81

  • De Gendt K, Swinnen JV, Saunders PT, et al. (2004) A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc Natl Acad Sci U S A. 101(5): 1327-32

  • De Gendt K, Verhoeven G, Amieux PS, Wilkinson MF (2014) Genome-wide identification of AR-regulated genes translated in Sertoli cells in vivo using the RiboTag approach. Mol Endocrinol. 28(4): 575-91

  • Abel MH, Baker PJ, Charlton HM, Monteiro A, Verhoeven G, De Gendt K, Guillou F, O'Shaughnessy PJ (2008) Spermatogenesis and Sertoli cell activity in mice lacking Sertoli cell receptors for follicle-stimulating hormone and androgen. Endocrinology. 149(7): 3279-85

  • Saito K, O'Donnell L, McLachlan RI, Robertson DM (2000) Spermiation failure is a major contributor to early spermatogenic suppression caused by hormone withdrawal in adult rats. Endocrinology. 141(8): 2779-85

  • Walker WH, Cheng J (2005) FSH and testosterone signaling in Sertoli cells. Reproduction. 130(1): 15-28

  • Nicholls PK, Harrison CA, Walton KL, McLachlan RI, O'Donnell L, Stanton PG (2011) Hormonal regulation of sertoli cell micro-RNAs at spermiation. Endocrinology. 152(4): 1670-83

  • Song HW, Wilkinson MF (2014) Transcriptional control of spermatogonial maintenance and differentiation. Semin Cell Dev Biol. 30: 14-26

  • Manku G, Culty M (2015) Mammalian gonocyte and spermatogonia differentiation: recent advances and remaining challenges. Reproduction. 149(3): R139-57

  • de Rooij DG (2009) The spermatogonial stem cell niche. Microsc Res Tech. 72(8): 580-5

  • Oatley MJ, Racicot KE, Oatley JM (2011) Sertoli cells dictate spermatogonial stem cell niches in the mouse testis. Biol Reprod. 84(4): 639-45

  • Giuili G, Tomljenovic A, Labrecque N, Oulad-Abdelghani M, Rassoulzadegan M, Cuzin F (2002) Murine spermatogonial stem cells: targeted transgene expression and purification in an active state. EMBO Rep. 3(8): 753-9

  • Meng X, Lindahl M, Hyvonen ME, et al. (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science. 287(5457): 1489-93

  • Nagano M, Ryu BY, Brinster CJ, Avarbock MR, Brinster RL (2003) Maintenance of mouse male germ line stem cells in vitro. Biol Reprod. 68(6): 2207-14

  • Shinohara T, Avarbock MR, Brinster RL (1999) beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci U S A. 96(10): 5504-9

  • Yomogida K, Yagura Y, Tadokoro Y, Nishimune Y (2003) Dramatic expansion of germinal stem cells by ectopically expressed human glial cell line-derived neurotrophic factor in mouse Sertoli cells. Biol Reprod. 69(4): 1303-7

  • Oatley JM, Oatley MJ, Avarbock MR, Tobias JW, Brinster RL (2009) Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal. Development. 136(7): 1191-9

  • DeFalco T, Potter SJ, Williams AV, Waller B, Kan MJ, Capel B (2015) Macrophages Contribute to the Spermatogonial Niche in the Adult Testis. Cell Rep. 12(7): 1107-19

  • Loveland KL, Schlatt S (1997) Stem cell factor and c-kit in the mammalian testis: lessons originating from Mother Nature's gene knockouts. J Endocrinol. 153(3): 337-44

  • Vincent S, Segretain D, Nishikawa S, Nishikawa SI, Sage J, Cuzin F, Rassoulzadegan M (1998) Stage-specific expression of the Kit receptor and its ligand (KL) during male gametogenesis in the mouse: a Kit-KL interaction critical for meiosis. Development. 125(22): 4585-93

  • Blume-Jensen P, Jiang G, Hyman R, Lee KF, O'Gorman S, Hunter T (2000) Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3'-kinase is essential for male fertility. Nat Genet. 24(2): 157-62

  • Hogarth CA, Griswold MD (2010) The key role of vitamin A in spermatogenesis. J Clin Invest. 120(4): 956-62

  • Whitmore LS, Ye P (2015) Dissecting Germ Cell Metabolism through Network Modeling. PLoS One. 10(9): e0137607

  • Griswold MD (2015) The initiation of spermatogenesis and the cycle of the seminiferous

  • epithelium, in Sertoli Cell Biology, Griswold, M.D., Editor Elsevier: Waltham, MA. p. 233-246

    238.

    Ikami K, Tokue M, Sugimoto R, Noda C, Kobayashi S, Hara K, Yoshida S (2015) Hierarchical differentiation competence in response to retinoic acid ensures stem cell maintenance during mouse spermatogenesis. Development. 142(9): 1582-92

    239.

    Busada JT, Chappell VA, Niedenberger BA, Kaye EP, Keiper BD, Hogarth CA, Geyer CB (2015) Retinoic acid regulates Kit translation during spermatogonial differentiation in the mouse. Dev Biol. 397(1): 140-9

    240.

    Busada JT, Niedenberger BA, Velte EK, Keiper BD, Geyer CB (2015) Mammalian target of rapamycin complex 1 (mTORC1) Is required for mouse spermatogonial differentiation in vivo. Dev Biol. DBIO15155

    241.

    McLachlan RI, O'Donnell L, Meachem SJ, Stanton PG, de Kretser DM, Pratis K, Robertson DM (2002) Identification of specific sites of hormonal regulation in spermatogenesis in rats, monkeys, and man. Recent Prog Horm Res. 57: 149-79

    242.

    Schlatt S, Ehmcke J (2014) Regulation of spermatogenesis: an evolutionary biologist's perspective. Semin Cell Dev Biol. 29: 2-16

    243.

    Haywood M, Spaliviero J, Jimemez M, King NJ, Handelsman DJ, Allan CM (2003) Sertoli and germ cell development in hypogonadal (hpg) mice expressing transgenic follicle-stimulating hormone alone or in combination with testosterone. Endocrinology. 144(2): 509-17

    244.

    Shetty G, Wilson G, Huhtaniemi I, Boettger-Tong H, Meistrich ML (2001) Testosterone inhibits spermatogonial differentiation in juvenile spermatogonial depletion mice. Endocrinology. 142(7): 2789-95

    245.

    Marshall GR, Zorub DS, Plant TM (1995) Follicle-stimulating hormone amplifies the population of differentiated spermatogonia in the hypophysectomized testosterone-replaced adult rhesus monkey (Macaca mulatta). Endocrinology. 136(8): 3504-11

    246.

    Weinbauer GF, Behre HM, Fingscheidt U, Nieschlag E (1991) Human follicle-stimulating hormone exerts a stimulatory effect on spermatogenesis, testicular size, and serum inhibin levels in the gonadotropin-releasing hormone antagonist-treated nonhuman primate (Macaca fascicularis). Endocrinology. 129(4): 1831-9

    247.

    De Rooij DG (2015) The spermatogonial stem cell niche in mammals, in Sertoli Cell Biology, Griswold, M.D., Editor Elsevier: Waltham, MA. p. 99-122

    248.

    Tanaka T, Kanatsu-Shinohara M, Lei Z, Rao CV, Shinohara T (2016) The Luteinizing Hormone-Testosterone Pathway Regulates Mouse Spermatogonial Stem Cell Self-Renewal by Suppressing WNT5A Expression in Sertoli Cells. Stem Cell Reports. 7(2): 279-91

    249.

    Anderson EL, Baltus AE, Roepers-Gajadien HL, Hassold TJ, de Rooij DG, van Pelt AM, Page DC (2008) Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci U S A. 105(39): 14976-80

    250.

    Mark M, Jacobs H, Oulad-Abdelghani M, Dennefeld C, Feret B, Vernet N, Codreanu CA, Chambon P, Ghyselinck NB (2008) STRA8-deficient spermatocytes initiate, but fail to complete, meiosis and undergo premature chromosome condensation. J Cell Sci. 121(Pt 19): 3233-42

    251.

    Koubova J, Hu YC, Bhattacharyya T, Soh YQ, Gill ME, Goodheart ML, Hogarth CA, Griswold MD, Page DC (2014) Retinoic acid activates two pathways required for meiosis in mice. PLoS Genet. 10(8): e1004541

    252.

    Abby E, Tourpin S, Ribeiro J, et al. (2016) Implementation of meiosis prophase I programme requires a conserved retinoid-independent stabilizer of meiotic transcripts. Nat Commun. 7: 10324

    253.

    Hermo L, Pelletier RM, Cyr DG, Smith CE (2010) Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: background to spermatogenesis, spermatogonia, and spermatocytes. Microsc Res Tech. 73(4): 241-78

    254.

    Morelli MA, Cohen PE (2005) Not all germ cells are created equal: aspects of sexual dimorphism in mammalian meiosis. Reproduction. 130(6): 761-81

    255.

    Sanderson ML, Hassold TJ, Carrell DT (2008) Proteins involved in meiotic recombination: a role in male infertility? Syst Biol Reprod Med. 54(2): 57-74

    256.

    Baker SM, Bronner CE, Zhang L, et al. (1995) Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell. 82(2): 309-19

    257.

    Zhu D, Dix DJ, Eddy EM (1997) HSP70-2 is required for CDC2 kinase activity in meiosis I of mouse spermatocytes. Development. 124(15): 3007-14

    258.

    Alekseev OM, Richardson RT, O'Rand MG (2009) Linker histones stimulate HSPA2 ATPase activity through NASP binding and inhibit CDC2/Cyclin B1 complex formation during meiosis in the mouse. Biol Reprod. 81(4): 739-48

    259.

    Eto K, Shiotsuki M, Abe S (2013) Nociceptin induces Rec8 phosphorylation and meiosis in postnatal murine testes. Endocrinology. 154(8): 2891-9

    260.

    Eto K (2015) Nociceptin and meiosis during spermatogenesis in postnatal testes. Vitam Horm. 97: 167-86

    261.

    Bolcun-Filas E, Bannister LA, Barash A, Schimenti KJ, Hartford SA, Eppig JJ, Handel MA, Shen L, Schimenti JC (2011) A-MYB (MYBL1) transcription factor is a master regulator of male meiosis. Development. 138(15): 3319-30

    262.

    O'Hara L, Smith LB (2015) Androgen receptor roles in spermatogenesis and infertility. Best Pract Res Clin Endocrinol Metab. 29(4): 595-605

    263.

    Handelsman DJ (2011) Hormonal regulation of spermatogenesis: insights from constructing genetic models. Reprod Fertil Dev. 23(4): 507-19

    264.

    El Shennawy A, Gates RJ, Russell LD (1998) Hormonal regulation of spermatogenesis in the hypophysectomized rat: cell viability after hormonal replacement in adults after intermediate periods of hypophysectomy. J Androl. 19(3): 320-34; discussion 341-2

    265.

    Chalmel F, Rolland AD, Niederhauser-Wiederkehr C, Chung SS, Demougin P, Gattiker A, Moore J, Patard JJ, Wolgemuth DJ, Jegou B, Primig M (2007) The conserved transcriptome in human and rodent male gametogenesis. Proc Natl Acad Sci U S A. 104(20): 8346-51

    266.

    Elliott DJ, Grellscheid SN (2006) Alternative RNA splicing regulation in the testis. Reproduction. 132(6): 811-9

    267.

    Foulkes NS, Mellstrom B, Benusiglio E, Sassone-Corsi P (1992) Developmental switch of CREM function during spermatogenesis: from antagonist to activator. Nature. 355(6355): 80-4

    268.

    Mandel CR, Bai Y, Tong L (2008) Protein factors in pre-mRNA 3'-end processing. Cell Mol Life Sci. 65(7-8): 1099-122

    269.

    MacDonald CC, McMahon KW (2010) Tissue-specific mechanisms of alternative polyadenylation: testis, brain, and beyond. Wiley Interdiscip Rev RNA. 1(3): 494-501

    270.

    Li W, Park JY, Zheng D, Hoque M, Yehia G, Tian B (2016) Alternative cleavage and polyadenylation in spermatogenesis connects chromatin regulation with post-transcriptional control. BMC Biol. 14(1): 6

    271.

    Hogeveen KN, Sassone-Corsi P (2006) Regulation of gene expression in post-meiotic male germ cells: CREM-signalling pathways and male fertility. Hum Fertil (Camb). 9(2): 73-9

    272.

    Macho B, Brancorsini S, Fimia GM, Setou M, Hirokawa N, Sassone-Corsi P (2002) CREM-dependent transcription in male germ cells controlled by a kinesin. Science. 298(5602): 2388-90

    273.

    Zhang D, Penttila TL, Morris PL, Teichmann M, Roeder RG (2001) Spermiogenesis deficiency in mice lacking the Trf2 gene. Science. 292(5519): 1153-5

    274.

    Wu Y, Hu X, Li Z, et al. (2016) Transcription Factor RFX2 Is a Key Regulator of Mouse Spermiogenesis. Sci Rep. 6: 20435

    275.

    Kleene KC (2003) Patterns, mechanisms, and functions of translation regulation in mammalian spermatogenic cells. Cytogenet Genome Res. 103(3-4): 217-24

    276.

    Cullinane DL, Chowdhury TA, Kleene KC (2015) Mechanisms of translational repression of the Smcp mRNA in round spermatids. Reproduction. 149(1): 43-54

    277.

    Kleene KC (2016) Position-dependent interactions of Y-box protein 2 (YBX2) with mRNA enable mRNA storage in round spermatids by repressing mRNA translation and blocking translation-dependent mRNA decay. Mol Reprod Dev.

    278.

    Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, Tilly JL, Clapham DE (2001) A sperm ion channel required for sperm motility and male fertility. Nature. 413(6856): 603-9

    279.

    Escudier E, Duquesnoy P, Papon JF, Amselem S (2009) Ciliary defects and genetics of primary ciliary dyskinesia. Paediatr Respir Rev. 10(2): 51-4

    280.

    Chung SS, Wang X, Wolgemuth DJ (2009) Expression of retinoic acid receptor alpha in the germline is essential for proper cellular association and spermiogenesis during spermatogenesis. Development. 136(12): 2091-100

    281.

    Holdcraft RW, Braun RE (2004) Androgen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids. Development. 131(2): 459-67

    282.

    O'Donnell L, McLachlan RI, Wreford NG, Robertson DM (1994) Testosterone promotes the conversion of round spermatids between stages VII and VIII of the rat spermatogenic cycle. Endocrinology. 135(6): 2608-14

    283.

    McLachlan RI, O'Donnell L, Stanton PG, Balourdos G, Frydenberg M, de Kretser DM, Robertson DM (2002) Effects of testosterone plus medroxyprogesterone acetate on semen quality, reproductive hormones, and germ cell populations in normal young men. J Clin Endocrinol Metab. 87(2): 546-56

    284.

    Heller CG, Clermont Y (1963) Spermatogenesis in man: an estimate of its duration. Science. 140(3563): 184-6

    285.

    Soumillon M, Necsulea A, Weier M, et al. (2013) Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Rep. 3(6): 2179-90

    286.

    Luo LF, Hou CC, Yang WX (2016) Small non-coding RNAs and their associated proteins in spermatogenesis. Gene. 578(2): 141-57

    287.

    Siomi MC, Sato K, Pezic D, Aravin AA (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol. 12(4): 246-58

    288.

    Fu Q, Wang PJ (2014) Mammalian piRNAs: Biogenesis, function, and mysteries. Spermatogenesis. 4: e27889

    289.

    Wang L, Xu C (2015) Role of microRNAs in mammalian spermatogenesis and testicular germ cell tumors. Reproduction. 149(3): R127-37

    290.

    de Mateo S, Sassone-Corsi P (2014) Regulation of spermatogenesis by small non-coding RNAs: role of the germ granule. Semin Cell Dev Biol. 29: 84-92

    291.

    Yadav RP, Kotaja N (2014) Small RNAs in spermatogenesis. Mol Cell Endocrinol. 382(1): 498-508

    292.

    Hogg K, Western PS (2015) Refurbishing the germline epigenome: Out with the old, in with the new. Semin Cell Dev Biol. 45: 104-13

    293.

    Jurka J, Kapitonov VV, Kohany O, Jurka MV (2007) Repetitive sequences in complex genomes: structure and evolution. Annu Rev Genomics Hum Genet. 8: 241-59

    294.

    Rayan NA, Del Rosario RC, Prabhakar S (2016) Massive contribution of transposable elements to mammalian regulatory sequences. Semin Cell Dev Biol.

    295.

    Bourc'his D, Bestor TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature. 431(7004): 96-9

    296.

    Pastor WA, Stroud H, Nee K, et al. (2014) MORC1 represses transposable elements in the mouse male germline. Nat Commun. 5: 5795

    297.

    Kuramochi-Miyagawa S, Watanabe T, Gotoh K, et al. (2008) DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. 22(7): 908-17

    298.

    Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ (2007) Developmentally regulated piRNA clusters implicate MILI in transposon control. Science. 316(5825): 744-7

    299.

    Carmell MA, Girard A, van de Kant HJ, Bourc'his D, Bestor TH, de Rooij DG, Hannon GJ (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell. 12(4): 503-14

    300.

    Werner A, Piatek MJ, Mattick JS (2015) Transpositional shuffling and quality control in male germ cells to enhance evolution of complex organisms. Ann N Y Acad Sci. 1341: 156-63

    301.

    Ashe A, Sapetschnig A, Weick EM, et al. (2012) piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell. 150(1): 88-99

    302.

    Schuster A, Skinner MK, Yan W (2016) Ancestral vinclozolin exposure alters the epigenetic transgenerational inheritance of sperm small noncoding RNAs. Environ Epigenet. 2(1)

    303.

    Meikar O, Vagin VV, Chalmel F, et al. (2014) An atlas of chromatoid body components. RNA. 20(4): 483-95

    304.

    Meikar O, Da Ros M, Korhonen H, Kotaja N (2011) Chromatoid body and small RNAs in male germ cells. Reproduction. 142(2): 195-209

    305.

    Yao C, Liu Y, Sun M, Niu M, Yuan Q, Hai Y, Guo Y, Chen Z, Hou J, He Z (2015) MicroRNAs and DNA methylation as epigenetic regulators of mitosis, meiosis and spermiogenesis. Reproduction. 150(1): R25-34

    306.

    Shirakawa T, Yaman-Deveci R, Tomizawa S, et al. (2013) An epigenetic switch is crucial for spermatogonia to exit the undifferentiated state toward a Kit-positive identity. Development. 140(17): 3565-76

    307.

    Papaioannou MD, Nef S (2010) microRNAs in the testis: building up male fertility. J Androl. 31(1): 26-33

    308.

    Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 11(3): 228-34

    309.

    Wu Q, Song R, Ortogero N, Zheng H, Evanoff R, Small CL, Griswold MD, Namekawa SH, Royo H, Turner JM, Yan W (2012) The RNase III Enzyme DROSHA Is Essential for MicroRNA Production and Spermatogenesis. J Biol Chem. 287(30): 25173-90

    310.

    Ro S, Park C, Sanders KM, McCarrey JR, Yan W (2007) Cloning and expression profiling of testis-expressed microRNAs. Dev Biol. 311(2): 592-602

    311.

    Han T, Manoharan AP, Harkins TT, Bouffard P, Fitzpatrick C, Chu DS, Thierry-Mieg D, Thierry-Mieg J, Kim JK (2009) 26G endo-siRNAs regulate spermatogenic and zygotic gene expression in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 106(44): 18674-9

    312.

    Pavelec DM, Lachowiec J, Duchaine TF, Smith HE, Kennedy S (2009) Requirement for the ERI/DICER complex in endogenous RNA interference and sperm development in Caenorhabditis elegans. Genetics. 183(4): 1283-95

    313.

    Song R, Hennig GW, Wu Q, Jose C, Zheng H, Yan W (2011) Male germ cells express abundant endogenous siRNAs. Proc Natl Acad Sci U S A. 108(32): 13159-64

    314.

    Ortogero N, Schuster AS, Oliver DK, et al. (2014) A novel class of somatic small RNAs similar to germ cell pachytene PIWI-interacting small RNAs. J Biol Chem. 289(47): 32824-34

    315.

    Lim SL, Qu ZP, Kortschak RD, et al. (2015) HENMT1 and piRNA Stability Are Required for Adult Male Germ Cell Transposon Repression and to Define the Spermatogenic Program in the Mouse. PLoS Genet. 11(10): e1005620

    316.

    Reuter M, Berninger P, Chuma S, Shah H, Hosokawa M, Funaya C, Antony C, Sachidanandam R, Pillai RS (2011) Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature. 480(7376): 264-7

    317.

    Di Giacomo M, Comazzetto S, Saini H, De Fazio S, Carrieri C, Morgan M, Vasiliauskaite L, Benes V, Enright AJ, O'Carroll D (2013) Multiple epigenetic mechanisms and the piRNA pathway enforce LINE1 silencing during adult spermatogenesis. Mol Cell. 50(4): 601-8

    318.

    Pantano L, Jodar M, Bak M, Ballesca JL, Tommerup N, Oliva R, Vavouri T (2015) The small RNA content of human sperm reveals pseudogene-derived piRNAs complementary to protein-coding genes. RNA. 21(6): 1085-95

    319.

    Goh WS, Falciatori I, Tam OH, Burgess R, Meikar O, Kotaja N, Hammell M, Hannon GJ (2015) piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis. Genes Dev. 29(10): 1032-44

    320.

    Watanabe T, Cheng EC, Zhong M, Lin H (2015) Retrotransposons and pseudogenes regulate mRNAs and lncRNAs via the piRNA pathway in the germline. Genome Res. 25(3): 368-80

    321.

    Zhang P, Kang JY, Gou LT, et al. (2015) MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes. Cell Res. 25(2): 193-207

    322.

    Luk AC, Chan WY, Rennert OM, Lee TL (2014) Long noncoding RNAs in spermatogenesis: insights from recent high-throughput transcriptome studies. Reproduction. 147(5): R131-41

    323.

    Zhang C, Gao L, Xu EY (2016) LncRNA, a new component of expanding RNA-protein regulatory network important for animal sperm development. Semin Cell Dev Biol.

    324.

    Lin X, Han M, Cheng L, Chen J, Zhang Z, Shen T, Wang M, Wen B, Ni T, Han C (2016) Expression dynamics, relationships, and transcriptional regulations of diverse transcripts in mouse spermatogenic cells. RNA Biol. 13(10): 1011-1024

    325.

    Liang M, Li W, Tian H, Hu T, Wang L, Lin Y, Li Y, Huang H, Sun F (2014) Sequential expression of long noncoding RNA as mRNA gene expression in specific stages of mouse spermatogenesis. Sci Rep. 4: 5966

    326.

    Wen K, Yang L, Xiong T, et al. (2016) Critical roles of long noncoding RNAs in Drosophila spermatogenesis. Genome Res. 26(9): 1233-44

    327.

    Li L, Wang M, Wu X, Geng L, Xue Y, Wei X, Jia Y (2016) A long non-coding RNA interacts with Gfra1 and maintains survival of mouse spermatogonial stem cells. Cell Death Dis. 7: e2140

    328.

    Stewart KR, Veselovska L, Kelsey G (2016) Establishment and functions of DNA methylation in the germline. Epigenomics. 8(10): 1399-1413

    329.

    Ly L, Chan D, Trasler JM (2015) Developmental windows of susceptibility for epigenetic inheritance through the male germline. Semin Cell Dev Biol. 43: 96-105

    330.

    Soubry A, Hoyo C, Jirtle RL, Murphy SK (2014) A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line. Bioessays. 36(4): 359-71

    331.

    Wei Y, Schatten H, Sun QY (2015) Environmental epigenetic inheritance through gametes and implications for human reproduction. Hum Reprod Update. 21(2): 194-208

    332.

    Skinner MK (2014) Endocrine disruptor induction of epigenetic transgenerational inheritance of disease. Mol Cell Endocrinol. 398(1-2): 4-12

    333.

    Skinner MK (2016) Endocrine disruptors in 2015: Epigenetic transgenerational inheritance. Nat Rev Endocrinol. 12(2): 68-70

    334.

    Anway MD, Rekow SS, Skinner MK (2008) Transgenerational epigenetic programming of the embryonic testis transcriptome. Genomics. 91(1): 30-40

    335.

    Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 308(5727): 1466-9

    336.

    Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ (2010) Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature. 467(7318): 963-6

    337.

    Fullston T, Ohlsson Teague EM, Palmer NO, DeBlasio MJ, Mitchell M, Corbett M, Print CG, Owens JA, Lane M (2013) Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 27(10): 4226-43

    338.

    Lambrot R, Xu C, Saint-Phar S, Chountalos G, Cohen T, Paquet M, Suderman M, Hallett M, Kimmins S (2013) Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes. Nat Commun. 4: 2889

    339.

    Cui X, Jing X, Wu X, Yan M, Li Q, Shen Y, Wang Z (2016) DNA methylation in spermatogenesis and male infertility. Exp Ther Med. 12(4): 1973-1979

    340.

    Rando OJ (2012) Daddy issues: paternal effects on phenotype. Cell. 151(4): 702-8

    341.

    Daxinger L, Whitelaw E (2012) Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet. 13(3): 153-62

    342.

    Conine CC, Moresco JJ, Gu W, Shirayama M, Conte D, Jr., Yates JR, 3rd, Mello CC (2013) Argonautes promote male fertility and provide a paternal memory of germline gene expression in C. elegans. Cell. 155(7): 1532-44

    343.

    Yuan S, Schuster A, Tang C, Yu T, Ortogero N, Bao J, Zheng H, Yan W (2016) Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development. Development. 143(4): 635-47

    344.

    Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J, Farinelli L, Miska E, Mansuy IM (2014) Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci. 17(5): 667-9

    345.

    Sharma U, Conine CC, Shea JM, et al. (2016) Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science. 351(6271): 391-6

    346.

    Hayes F, Dwyer A, Pitteloud N. (2013) Hypogonadotropic hypogondism (HH) and gonadotropin therapy, in www​.ENDOTEXT.org, Endocrinology of Male Reproduction, Section Editor McLachlan R.I. MDTEXTCOM Inc.: South Dartmouth, MA

    347.

    Plant TM (2008) Hypothalamic control of the pituitary-gonadal axis in higher primates: key advances over the last two decades. J Neuroendocrinol. 20(6): 719-26

    348.

    Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M (2012) Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev. 92(3): 1235-316

    349.

    Mittelman-Smith MA, Williams H, Krajewski-Hall SJ, Lai J, Ciofi P, McMullen NT, Rance NE (2012) Arcuate kisspeptin/neurokinin B/dynorphin (KNDy) neurons mediate the estrogen suppression of gonadotropin secretion and body weight. Endocrinology. 153(6): 2800-12

    350.

    Tsutsui K, Ubuka T, Bentley GE, Kriegsfeld LJ (2012) Gonadotropin-inhibitory hormone (GnIH): discovery, progress and prospect. Gen Comp Endocrinol. 177(3): 305-14

    351.

    Clarke IJ (2011) Control of GnRH secretion: one step back. Front Neuroendocrinol. 32(3): 367-75

    352.

    Phillips DJ, de Kretser DM (1998) Follistatin: a multifunctional regulatory protein. Front Neuroendocrinol. 19(4): 287-322

    353.

    Jin JM, Yang WX (2014) Molecular regulation of hypothalamus-pituitary-gonads axis in males. Gene. 551(1): 15-25

    354.

    Hashimoto O, Nakamura T, Shoji H, Shimasaki S, Hayashi Y, Sugino H (1997) A novel role of follistatin, an activin-binding protein, in the inhibition of activin action in rat pituitary cells. Endocytotic degradation of activin and its acceleration by follistatin associated with cell-surface heparan sulfate. J Biol Chem. 272(21): 13835-42

    355.

    Sherins RJ, Loriaux DL (1973) Studies of the role of sex steroids in the feedback control of FSH concentrations in men. J Clin Endocrinol Metab. 36(5): 886-93

    356.

    Naftolin F, Ryan KJ, Petro Z (1971) Aromatization of androstenedione by the diencephalon. J Clin Endocrinol Metab. 33(2): 368-70

    357.

    Santen RJ (1975) Is aromatization of testosterone to estradiol required for inhibition of luteinizing hormone secretion in men? J Clin Invest. 56(6): 1555-63

    358.

    Santen RJ, Bardin CW (1973) Episodic luteinizing hormone secretion in man. Pulse analysis, clinical interpretation, physiologic mechanisms. J Clin Invest. 52(10): 2617-28

    359.

    Hayes FJ, Seminara SB, Decruz S, Boepple PA, Crowley WF, Jr. (2000) Aromatase inhibition in the human male reveals a hypothalamic site of estrogen feedback. J Clin Endocrinol Metab. 85(9): 3027-35

    360.

    Tilbrook AJ, de Kretser DM, Cummins JT, Clarke IJ (1991) The negative feedback effects of testicular steroids are predominantly at the hypothalamus in the ram. Endocrinology. 129(6): 3080-92

    361.

    Decker MH, Loriaux DL, Cutler GB, Jr. (1981) A seminiferous tubular factor is not obligatory for regulation of plasma follicle-stimulating hormone in the rat. Endocrinology. 108(3): 1035-9

    362.

    McCullagh DR (1932) Dual Endocrine Activity of the Testes. Science. 76(1957): 19-20

    363.

    de Kretser DM, Robertson DM (1989) The isolation and physiology of inhibin and related proteins. Biol Reprod. 40(1): 33-47

    364.

    Forage RG, Ring JM, Brown RW, McInerney BV, Cobon GS, Gregson RP, Robertson DM, Morgan FJ, Hearn MT, Findlay JK, et al. (1986) Cloning and sequence analysis of cDNA species coding for the two subunits of inhibin from bovine follicular fluid. Proc Natl Acad Sci U S A. 83(10): 3091-5

    365.

    Ling N, Ying SY, Ueno N, Esch F, Denoroy L, Guillemin R (1985) Isolation and partial characterization of a Mr 32,000 protein with inhibin activity from porcine follicular fluid. Proc Natl Acad Sci U S A. 82(21): 7217-21

    366.

    Mason AJ, Hayflick JS, Ling N, Esch F, Ueno N, Ying SY, Guillemin R, Niall H, Seeburg PH (1985) Complementary DNA sequences of ovarian follicular fluid inhibin show precursor structure and homology with transforming growth factor-beta. Nature. 318(6047): 659-63

    367.

    Robertson DM, Foulds LM, Leversha L, Morgan FJ, Hearn MT, Burger HG, Wettenhall RE, de Kretser DM (1985) Isolation of inhibin from bovine follicular fluid. Biochem Biophys Res Commun. 126(1): 220-6

    368.

    Ling N, Ying SY, Ueno N, Shimasaki S, Esch F, Hotta M, Guillemin R (1986) Pituitary FSH is released by a heterodimer of the beta-subunits from the two forms of inhibin. Nature. 321(6072): 779-82

    369.

    Vale W, Rivier J, Vaughan J, McClintock R, Corrigan A, Woo W, Karr D, Spiess J (1986) Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid. Nature. 321(6072): 776-9

    370.

    Robertson DM, Klein R, de Vos FL, McLachlan RI, Wettenhall RE, Hearn MT, Burger HG, de Kretser DM (1987) The isolation of polypeptides with FSH suppressing activity from bovine follicular fluid which are structurally different to inhibin. Biochem Biophys Res Commun. 149(2): 744-9

    371.

    Shimasaki S, Koga M, Esch F, Mercado M, Cooksey K, Koba A, Ling N (1988) Porcine follistatin gene structure supports two forms of mature follistatin produced by alternative splicing. Biochem Biophys Res Commun. 152(2): 717-23

    372.

    Ueno N, Ling N, Ying SY, Esch F, Shimasaki S, Guillemin R (1987) Isolation and partial characterization of follistatin: a single-chain Mr 35,000 monomeric protein that inhibits the release of follicle-stimulating hormone. Proc Natl Acad Sci U S A. 84(23): 8282-6

    373.

    Nakamura T, Takio K, Eto Y, Shibai H, Titani K, Sugino H (1990) Activin-binding protein from rat ovary is follistatin. Science. 247(4944): 836-8

    374.

    Rea MA, Marshall GR, Weinbauer GF, Nieschlag E (1986) Testosterone maintains pituitary and serum FSH and spermatogenesis in gonadotrophin-releasing hormone antagonist-suppressed rats. J Endocrinol. 108(1): 101-7

    375.

    Sun YT, Irby DC, Robertson DM, de Kretser DM (1989) The effects of exogenously administered testosterone on spermatogenesis in intact and hypophysectomized rats. Endocrinology. 125(2): 1000-10

    376.

    Jackson CM, Morris ID (1977) Gonadotrophin levels in male rats following impairment of Leydig cell function by ethylene dimethanesulphonate. Andrologia. 9(1): 29-35

    377.

    De Kretser DM, O'Leary PC, Irby DC, Risbridger GP (1989) Inhibin secretion is influenced by Leydig cells: evidence from studies using the cytotoxin ethane dimethane sulphonate (EDS). Int J Androl. 12(4): 273-80

    378.

    O'Leary P, Jackson AE, Averill S, de Kretser DM (1986) The effects of ethane dimethane sulphonate (EDS) on bilaterally cryptorchid rat testes. Mol Cell Endocrinol. 45(2-3): 183-90

    379.

    Le Gac F, de Kretser DM (1982) Inhibin production by Sertoli cell cultures. Mol Cell Endocrinol. 28(3): 487-98

    380.

    Steinberger A, Steinberger E (1976) Secretion of an FSH-inhibiting factor by cultured Sertoli cells. Endocrinology. 99(3): 918-21

    381.

    Klaij IA, Timmerman MA, Blok LJ, Grootegoed JA, de Jong FH (1992) Regulation of inhibin beta B-subunit mRNA expression in rat Sertoli cells: consequences for the production of bioactive and immunoreactive inhibin. Mol Cell Endocrinol. 85(3): 237-46

    382.

    Sharpe RM, Turner KJ, McKinnell C, Groome NP, Atanassova N, Millar MR, Buchanan DL, Cooke PS (1999) Inhibin B levels in plasma of the male rat from birth to adulthood: effect of experimental manipulation of Sertoli cell number. J Androl. 20(1): 94-101

    383.

    Anawalt BD, Bebb RA, Matsumoto AM, Groome NP, Illingworth PJ, McNeilly AS, Bremner WJ (1996) Serum inhibin B levels reflect Sertoli cell function in normal men and men with testicular dysfunction. J Clin Endocrinol Metab. 81(9): 3341-5

    384.

    Anderson RA, Wallace EM, Groome NP, Bellis AJ, Wu FC (1997) Physiological relationships between inhibin B, follicle stimulating hormone secretion and spermatogenesis in normal men and response to gonadotrophin suppression by exogenous testosterone. Hum Reprod. 12(4): 746-51

    385.

    Krummen LA, Toppari J, Kim WH, Morelos BS, Ahmad N, Swerdloff RS, Ling N, Shimasaki S, Esch F, Bhasin S (1989) Regulation of testicular inhibin subunit messenger ribonucleic acid levels in vivo: effects of hypophysectomy and selective follicle-stimulating hormone replacement. Endocrinology. 125(3): 1630-7

    386.

    Wallace EM, Groome NP, Riley SC, Parker AC, Wu FC (1997) Effects of chemotherapy-induced testicular damage on inhibin, gonadotropin, and testosterone secretion: a prospective longitudinal study. J Clin Endocrinol Metab. 82(9): 3111-5

    387.

    Risbridger GP, Clements J, Robertson DM, Drummond AE, Muir J, Burger HG, de Kretser DM (1989) Immuno- and bioactive inhibin and inhibin alpha-subunit expression in rat Leydig cell cultures. Mol Cell Endocrinol. 66(1): 119-22

    388.

    McLachlan RI, Matsumoto AM, Burger HG, de Kretser DM, Bremner WJ (1988) Relative roles of follicle-stimulating hormone and luteinizing hormone in the control of inhibin secretion in normal men. J Clin Invest. 82(3): 880-4

    389.

    Tena-Sempere M, Kero J, Rannikko A, Yan W, Huhtaniemi I (1999) The pattern of inhibin/activin alpha- and betaB-subunit messenger ribonucleic acid expression in rat testis after selective Leydig cell destruction by ethylene dimethane sulfonate. Endocrinology. 140(12): 5761-70

    390.

    Matthiesson KL, Robertson DM, Burger HG, McLachlan RI (2003) Response of serum inhibin B and pro-alphaC levels to gonadotrophic stimulation in normal men before and after steroidal contraceptive treatment. Hum Reprod. 18(4): 734-43

    391.

    de Winter JP, Vanderstichele HM, Timmerman MA, Blok LJ, Themmen AP, de Jong FH (1993) Activin is produced by rat Sertoli cells in vitro and can act as an autocrine regulator of Sertoli cell function. Endocrinology. 132(3): 975-82

    392.

    Lee W, Mason AJ, Schwall R, Szonyi E, Mather JP (1989) Secretion of activin by interstitial cells in the testis. Science. 243(4889): 396-8

    393.

    McFarlane JR, Foulds LM, Pisciotta A, Robertson DM, de Kretser DM (1996) Measurement of activin in biological fluids by radioimmunoassay, utilizing dissociating agents to remove the interference of follistatin. Eur J Endocrinol. 134(4): 481-9

    394.

    Mather JP, Attie KM, Woodruff TK, Rice GC, Phillips DM (1990) Activin stimulates spermatogonial proliferation in germ-Sertoli cell cocultures from immature rat testis. Endocrinology. 127(6): 3206-14

    395.

    Archambeault DR, Yao HH (2010) Activin A, a product of fetal Leydig cells, is a unique paracrine regulator of Sertoli cell proliferation and fetal testis cord expansion. Proc Natl Acad Sci U S A. 107(23): 10526-31

    396.

    Buzzard JJ, Farnworth PG, De Kretser DM, O'Connor AE, Wreford NG, Morrison JR (2003) Proliferative phase sertoli cells display a developmentally regulated response to activin in vitro. Endocrinology. 144(2): 474-83

    397.

    Mendis SH, Meachem SJ, Sarraj MA, Loveland KL (2011) Activin A balances Sertoli and germ cell proliferation in the fetal mouse testis. Biol Reprod. 84(2): 379-91

    398.

    de Winter JP, Themmen AP, Hoogerbrugge JW, Klaij IA, Grootegoed JA, de Jong FH (1992) Activin receptor mRNA expression in rat testicular cell types. Mol Cell Endocrinol. 83(1): R1-8

    399.

    Meinhardt A, O'Bryan MK, McFarlane JR, Loveland KL, Mallidis C, Foulds LM, Phillips DJ, de Kretser DM (1998) Localization of follistatin in the rat testis. J Reprod Fertil. 112(2): 233-41

    400.

    Michel U, Albiston A, Findlay JK (1990) Rat follistatin: gonadal and extragonadal expression and evidence for alternative splicing. Biochem Biophys Res Commun. 173(1): 401-7

    401.

    Tilbrook AJ, de Kretser DM, Dunshea FR, Klein R, Robertson DM, Clarke IJ, Maddocks S (1996) The testis is not the major source of circulating follistatin in the ram. J Endocrinol. 149(1): 55-63

    402.

    Phillips DJ, Hedger MP, McFarlane JR, Klein R, Clarke IJ, Tilbrook AJ, Nash AD, de Kretser DM (1996) Follistatin concentrations in male sheep increase following sham castration/castration or injection of interleukin-1 beta. J Endocrinol. 151(1): 119-24

    403.

    Dubey AK, Zeleznik AJ, Plant TM (1987) In the rhesus monkey (Macaca mulatta), the negative feedback regulation of follicle-stimulating hormone secretion by an action of testicular hormone directly at the level of the anterior pituitary gland cannot be accounted for by either testosterone or estradiol. Endocrinology. 121(6): 2229-37

    404.

    Ramaswamy S, Pohl CR, McNeilly AS, Winters SJ, Plant TM (1998) The time course of follicle-stimulating hormone suppression by recombinant human inhibin A in the adult male rhesus monkey (Macaca mulatta). Endocrinology. 139(8): 3409-15

    405.

    Robertson DM, Prisk M, McMaster JW, Irby DC, Findlay JK, de Kretser DM (1991) Serum FSH-suppressing activity of human recombinant inhibin A in male and female rats. J Reprod Fertil. 91(1): 321-8

    406.

    Tilbrook AJ, de Kretser DM, Clarke IJ (1993) Human recombinant inhibin A and testosterone act directly at the pituitary to suppress plasma concentrations of FSH in castrated rams. J Endocrinol. 138(2): 181-9

    407.

    Tilbrook AJ, De Kretser DM, Clarke IJ (1993) Human recombinant inhibin A suppresses plasma follicle-stimulating hormone to intact levels but has no effect on luteinizing hormone in castrated rams. Biol Reprod. 49(4): 779-88

    408.

    Roberts V, Meunier H, Vaughan J, Rivier J, Rivier C, Vale W, Sawchenko P (1989) Production and regulation of inhibin subunits in pituitary gonadotropes. Endocrinology. 124(1): 552-4

    409.

    Corrigan AZ, Bilezikjian LM, Carroll RS, Bald LN, Schmelzer CH, Fendly BM, Mason AJ, Chin WW, Schwall RH, Vale W (1991) Evidence for an autocrine role of activin B within rat anterior pituitary cultures. Endocrinology. 128(3): 1682-4

    410.

    Gospodarowicz D, Lau K (1989) Pituitary follicular cells secrete both vascular endothelial growth factor and follistatin. Biochem Biophys Res Commun. 165(1): 292-8

    411.

    Kogawa K, Nakamura T, Sugino K, Takio K, Titani K, Sugino H (1991) Activin-binding protein is present in pituitary. Endocrinology. 128(3): 1434-40

    412.

    Bilezikjian LM, Corrigan AZ, Blount AL, Vale WW (1996) Pituitary follistatin and inhibin subunit messenger ribonucleic acid levels are differentially regulated by local and hormonal factors. Endocrinology. 137(10): 4277-84

    413.

    Bilezikjian LM, Vaughan JM, Vale WW (1993) Characterization and the regulation of inhibin/activin subunit proteins of cultured rat anterior pituitary cells. Endocrinology. 133(6): 2545-53

    414.

    Gonzales GF, Risbridger GP, de Krester DM (1989) In vivo and in vitro production of inhibin by cryptorchid testes from adult rats. Endocrinology. 124(4): 1661-8

    415.

    Weinbauer GF, Bartlett JM, Fingscheidt U, Tsonis CG, de Kretser DM, Nieschlag E (1989) Evidence for a major role of inhibin in the feedback control of FSH in the male rat. J Reprod Fertil. 85(2): 355-62

    416.

    Jensen TK, Andersson AM, Hjollund NH, et al. (1997) Inhibin B as a serum marker of spermatogenesis: correlation to differences in sperm concentration and follicle-stimulating hormone levels. A study of 349 Danish men. J Clin Endocrinol Metab. 82(12): 4059-63

    417.

    Matzuk MM, Kumar TR, Bradley A (1995) Different phenotypes for mice deficient in either activins or activin receptor type II. Nature. 374(6520): 356-60

    418.

    Singh J, O'Neill C, Handelsman DJ (1995) Induction of spermatogenesis by androgens in gonadotropin-deficient (hpg) mice. Endocrinology. 136(12): 5311-21

    419.

    O’Donnell L, McLachlan RI (2012) The role of testosterone in spermatogenesis, in Testosterone: action, deficiency, substitution, Nieschlag, E., Behre, H.M., and Nieschlag, S., Editors. Cambridge University Press: New York, USA. p. 123-153

    420.

    Huang HF, Marshall GR, Rosenberg R, Nieschlag E (1987) Restoration of spermatogenesis by high levels of testosterone in hypophysectomized rats after long-term regression. Acta Endocrinol (Copenh). 116(4): 433-44

    421.

    Grino PB, Griffin JE, Wilson JD (1990) Testosterone at high concentrations interacts with the human androgen receptor similarly to dihydrotestosterone. Endocrinology. 126(2): 1165-72

    422.

    Handelsman DJ, Spaliviero JA, Simpson JM, Allan CM, Singh J (1999) Spermatogenesis without gonadotropins: maintenance has a lower testosterone threshold than initiation. Endocrinology. 140(9): 3938-46

    423.

    Zhang FP, Pakarainen T, Poutanen M, Toppari J, Huhtaniemi I (2003) The low gonadotropin-independent constitutive production of testicular testosterone is sufficient to maintain spermatogenesis. Proc Natl Acad Sci U S A. 100(23): 13692-7

    424.

    Bremner WJ, Millar MR, Sharpe RM, Saunders PT (1994) Immunohistochemical localization of androgen receptors in the rat testis: evidence for stage-dependent expression and regulation by androgens. Endocrinology. 135(3): 1227-34

    425.

    Van Roijen JH, Van Assen S, Van Der Kwast TH, De Rooij DG, Boersma WJ, Vreeburg JT, Weber RF (1995) Androgen receptor immunoexpression in the testes of subfertile men. J Androl. 16(6): 510-6

    426.

    Welsh M, Sharpe RM, Moffat L, Atanassova N, Saunders PT, Kilter S, Bergh A, Smith LB (2010) Androgen action via testicular arteriole smooth muscle cells is important for Leydig cell function, vasomotion and testicular fluid dynamics. PLoS One. 5(10): e13632

    427.

    Johnston DS, Russell LD, Friel PJ, Griswold MD (2001) Murine germ cells do not require functional androgen receptors to complete spermatogenesis following spermatogonial stem cell transplantation. Endocrinology. 142(6): 2405-8

    428.

    Tsai MY, Yeh SD, Wang RS, Yeh S, Zhang C, Lin HY, Tzeng CR, Chang C (2006) Differential effects of spermatogenesis and fertility in mice lacking androgen receptor in individual testis cells. Proc Natl Acad Sci U S A. 103(50): 18975-80

    429.

    Lim P, Robson M, Spaliviero J, McTavish KJ, Jimenez M, Zajac JD, Handelsman DJ, Allan CM (2009) Sertoli cell androgen receptor DNA binding domain is essential for the completion of spermatogenesis. Endocrinology. 150(10): 4755-65

    430.

    O'Donnell L, McLachlan RI, Wreford NG, de Kretser DM, Robertson DM (1996) Testosterone withdrawal promotes stage-specific detachment of round spermatids from the rat seminiferous epithelium. Biol Reprod. 55(4): 895-901

    431.

    O'Donnell L, Pratis K, Stanton PG, Robertson DM, McLachlan RI (1999) Testosterone-dependent restoration of spermatogenesis in adult rats is impaired by a 5alpha-reductase inhibitor. J Androl. 20(1): 109-17

    432.

    Meng J, Holdcraft RW, Shima JE, Griswold MD, Braun RE (2005) Androgens regulate the permeability of the blood-testis barrier. Proc Natl Acad Sci U S A. 102(46): 16696-700

    433.

    McCabe MJ, Allan CM, Foo CF, Nicholls PK, McTavish KJ, Stanton PG (2012) Androgen Initiates Sertoli Cell Tight Junction Formation in the Hypogonadal (hpg) Mouse. Biol Reprod. 87(2): 38

    434.

    Willems A, Batlouni SR, Esnal A, Swinnen JV, Saunders PT, Sharpe RM, Franca LR, De Gendt K, Verhoeven G (2010) Selective ablation of the androgen receptor in mouse Sertoli cells affects Sertoli cell maturation, barrier formation and cytoskeletal development. PLoS One. 5(11): e14168

    435.

    Zhengwei Y, Wreford NG, Royce P, de Kretser DM, McLachlan RI (1998) Stereological evaluation of human spermatogenesis after suppression by testosterone treatment: heterogeneous pattern of spermatogenic impairment. J Clin Endocrinol Metab. 83(4): 1284-91

    436.

    Weinbauer GF, Schlatt S, Walter V, Nieschlag E (2001) Testosterone-induced inhibition of spermatogenesis is more closely related to suppression of FSH than to testicular androgen levels in the cynomolgus monkey model (Macaca fascicularis). J Endocrinol. 168(1): 25-38

    437.

    Narula A, Gu YQ, O'Donnell L, Stanton PG, Robertson DM, McLachlan RI, Bremner WJ (2002) Variability in sperm suppression during testosterone administration to adult monkeys is related to follicle stimulating hormone suppression and not to intratesticular androgens. J Clin Endocrinol Metab. 87(7): 3399-406

    438.

    Allan CM, Handelsman DJ (2005) Transgenic models for exploring gonadotropin biology in the male. Endocrine. 26(3): 235-39

    439.

    Heckert L, Griswold MD (1993) Expression of the FSH receptor in the testis. Recent Prog Horm Res. 48: 61-77

    440.

    Rannikko A, Penttila TL, Zhang FP, Toppari J, Parvinen M, Huhtaniemi I (1996) Stage-specific expression of the FSH receptor gene in the prepubertal and adult rat seminiferous epithelium. J Endocrinol. 151(1): 29-35

    441.

    Allan CM, Garcia A, Spaliviero J, Zhang FP, Jimenez M, Huhtaniemi I, Handelsman DJ (2004) Complete Sertoli cell proliferation induced by follicle-stimulating hormone (FSH) independently of luteinizing hormone activity: evidence from genetic models of isolated FSH action. Endocrinology. 145(4): 1587-93

    442.

    O'Donnell L, Narula A, Balourdos G, Gu YQ, Wreford NG, Robertson DM, Bremner WJ, McLachlan RI (2001) Impairment of spermatogonial development and spermiation after testosterone-induced gonadotropin suppression in adult monkeys (Macaca fascicularis). J Clin Endocrinol Metab. 86(4): 1814-22

    443.

    McLachlan RI, O'Donnell L, Meachem SJ, Stanton PG, de K, Pratis K, Robertson DM (2002) Hormonal regulation of spermatogenesis in primates and man: insights for development of the male hormonal contraceptive. J Androl. 23(2): 149-62

    444.

    Meachem SJ, Wreford NG, Stanton PG, Robertson DM, McLachlan RI (1998) Follicle-stimulating hormone is required for the initial phase of spermatogenic restoration in adult rats following gonadotropin suppression. J Androl. 19(6): 725-35

    445.

    Matsumoto AM, Karpas AE, Paulsen CA, Bremner WJ (1983) Reinitiation of sperm production in gonadotropin-suppressed normal men by administration of follicle-stimulating hormone. J Clin Invest. 72(3): 1005-15

    446.

    Matsumoto AM, Paulsen CA, Bremner WJ (1984) Stimulation of sperm production by human luteinizing hormone in gonadotropin-suppressed normal men. J Clin Endocrinol Metab. 59(5): 882-7

    447.

    Bremner WJ, Matsumoto AM, Sussman AM, Paulsen CA (1981) Follicle-stimulating hormone and human spermatogenesis. J Clin Invest. 68(4): 1044-52

    448.

    Kumar R (2013) Medical management of non-obstructive azoospermia. Clinics (Sao Paulo). 68 Suppl 1: 75-9

    449.

    McLachlan RI (2013) Approach to the patient with oligozoospermia. J Clin Endocrinol Metab. 98(3): 873-80

    450.

    Handelsman DJ. (2015) Male contraception, in www​.ENDOTEXT.org, Endocrinology of Male Reproduction, Section Editor McLachlan R.I. MDTEXTCOM Inc.: South Dartmouth, MA

    Endocrinology of the Male Reproductive System and Spermatogenesis (2025)

    References

    Top Articles
    Latest Posts
    Recommended Articles
    Article information

    Author: Jonah Leffler

    Last Updated:

    Views: 6157

    Rating: 4.4 / 5 (65 voted)

    Reviews: 80% of readers found this page helpful

    Author information

    Name: Jonah Leffler

    Birthday: 1997-10-27

    Address: 8987 Kieth Ports, Luettgenland, CT 54657-9808

    Phone: +2611128251586

    Job: Mining Supervisor

    Hobby: Worldbuilding, Electronics, Amateur radio, Skiing, Cycling, Jogging, Taxidermy

    Introduction: My name is Jonah Leffler, I am a determined, faithful, outstanding, inexpensive, cheerful, determined, smiling person who loves writing and wants to share my knowledge and understanding with you.